

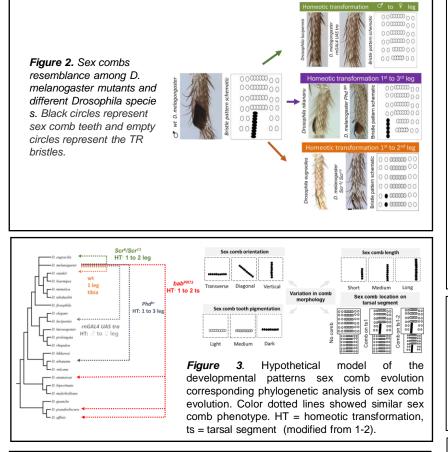
Homeotic transformations can mimic the evolution of leg bristles in *Drosophila* species

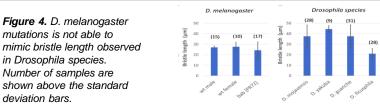
Naomi Derksen^{1*}, Megan Mulder^{1*}, Dawson Doucet^{1*}, Nathan Friesen^{1*}, Juan Nicolas Malagon¹

Introduction

As insects have an exoskeleton, bristles cover most of their body because they use them to perceive their environment. Bristles have proven to be a valuable model system for studying aspects of evolution including evolutionary innovations, developmental constraints and effect of artificial selection.

Sex combs are excellent systems for studying convergent evolution (1,2). A sex comb is a secondary sexual trait, a row of leg bristles, the (Fig 1). To elucidate possible mechanisms of convergent evolution, we investigated the arrangement and organization of leg bristles in different *Drosophila species*.




Figure 1. Morphological variation observed in sex combs among Drosophila species. Adult legs of different *Drosophila* species. Modified from 1

We previously suggested that the existence of *D. melanogaster* mutants which mimic bristle patterns in other insect clades suggest that there may be a basic "ground plan", which can allow rapid changes during evolution. Here, we expand our model and propose a potential cellular and developmental processes responsible for the cases of convergent evolution

Methods

- To study leg chaetotaxy, we studied fruit fly wild type and the following mutant flies: Sex comb reduced⁶ /Sex comb reduced¹³ (Scr⁶/Scr¹³), Polyhomeotic distal (Phd^{br}) bric à brac^{PR72} (bab^{PR72}).
- We used the UAS GAL4 system: *rnGAL4-5* and *UAS Tra^F*. These legs stocks were dissected, and mounted on slides, and imaged in a light microscope (Olympus BX41M).
- We followed a similar protocol to mount the following *Drosophila species: D. mojavensis, D. ficusphila, D. yakuba, D. guanche.* The length of the bristles was calculated using the imaging software, ImageJ (NIH, http://rsb.info.nih.gov/ij).

Results:

To study how sex comb evolve, we asked how many genetic changes are necessary to produce a sex comb in *D. melanogaster* that resemble a sex comb phenotype from a different species.

- We found that homeotic mutants reproduce multiple traits found in four different *Drosophila species* (figure 2).
- We also found that Homeotic transformation in *D. melanogaster* resemble the sex comb phenotypes observed throughout the phylogeny (figure 3).
- We found that bab^{PR72}mutant can significantly increase the variation in bristle. length (Stdev wt ♂ =1.3, Stdev bab^{PR72} ♂ = 7.8). However, this variation is not enough to mimic the bristle length found in the *Drosophila species* studied. (figure 4)

Discussion

The mimicking potential among *D. melanogaster* homeotic mutants and related species is consistent with rapid sex comb evolution. However, this mimicking potential has a limit as shown by bristle length.

Few developmental processes developmental basis of wide variety phenotypic variation (Figure 3)

Acknowledgements:

We thank Canadian Mennonite University for funding and support. 1) Canadian Mennonite University, Winnipeg MB, Canada R3P 2N2. *These authors contributed equally. References

 Malagon J & Larsen, E. (2020). Chapter four- Developmental Plasticity Induced by Either External or Internal Environment Co-opts Ancient Regulatory Networks. Guex, J., Torday, B., Miller Jr., William B. (Eds). Morphogenesis, Environmental Stress and Reverse Evolution. Switzerland: Springer International Publishing. <u>https://doi.org/10.1007/978-3-030-47279-5_6</u>

2. Kopp, A. 2011. Drosophila sex combs as a model of evolutionary innovations. Evolution and development. Vol 13, pp 504–522.